LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Analysis of General Geometric Decorrelation in Interferometric SAR

Photo from wikipedia

Traditional interferometric synthetic aperture radar (InSAR) is based on broadside looking geometry and parallel tracks. With the increase of the orbit height in spaceborne SAR and the development of SAR… Click to show full abstract

Traditional interferometric synthetic aperture radar (InSAR) is based on broadside looking geometry and parallel tracks. With the increase of the orbit height in spaceborne SAR and the development of SAR constellations, InSAR data of a region can be acquired in complex geometry, especially squint beam steering and unparallel tracks. For the sake of optimal InSAR system design and data processing, it is necessary to model the geometric decorrelation in complex geometry. This letter derives an accurate analytical model of geometric decorrelation of SAR interferometric pairs for general SAR observation geometry. Nonidentity of impulse responses and nonorthogonal sidelobes are the main features hindering the model derivation in the complex geometry case. An impulse response-fitting method is proposed, where nonorthogonal bases are adopted to suit the features and, thus, accurately analyze the geometric decorrelation. Simulation results verify the analytical model. It is found that unparallel tracks will introduce an extra geometric decorrelation factor. Compared to cases of parallel tracks, unparallel tracks always worsen the geometric decorrelation and cannot be neglected.

Keywords: complex geometry; geometry; model; geometric decorrelation; sar

Journal Title: IEEE Geoscience and Remote Sensing Letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.