LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Near-Field Chipless-RFID System With Erasable/Programmable 40-bit Tags Inkjet Printed on Paper Substrates

Photo from wikipedia

In this letter, a chipless radio frequency identification (chipless-RFID) system with erasable/programmable 40-bit tags inkjet printed on paper substrates, where tag reading proceeds sequentially through near-field coupling, is presented for… Click to show full abstract

In this letter, a chipless radio frequency identification (chipless-RFID) system with erasable/programmable 40-bit tags inkjet printed on paper substrates, where tag reading proceeds sequentially through near-field coupling, is presented for the first time. The tags consist of a linear chain of identical split ring resonators (SRRs) printed at predefined and equidistant positions on a paper substrate, and each resonant element provides a bit of information. Tag programming is achieved by cutting certain resonant elements, providing the logic state “0” to the corresponding bit. Conversely, tags can be erased (all bits set to “1”) by short circuiting those previously cut resonant elements through inkjet. An important feature of the proposed system is the fact that tag reading is possible either with the SRR chain faced up or faced down (with regard to the reader). To this end, two pairs of header bits (resonators), with different sequences, have been added at the beginning and at the end of the tag identification chain. Moreover, tag data storage capacity (number of bits) is only limited by the space occupied by the linear chain. The implementation of tags on paper substrates demonstrates the potential of the proposed chipless-RFID system in secure paper applications, where the necessary proximity between the reader and the tag, inherent to near-field reading, is not an issue.

Keywords: rfid system; paper; paper substrates; chipless; chipless rfid

Journal Title: IEEE Microwave and Wireless Components Letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.