LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Toward the Integration of CV Quantum Key Distribution in Deployed Optical Networks

Photo by averey from unsplash

In this letter, we report on the advances toward the integration of our developed continuous variables (CV) quantum key distribution (QKD) system in existing optical infrastructure and wavelength division multiplexed… Click to show full abstract

In this letter, we report on the advances toward the integration of our developed continuous variables (CV) quantum key distribution (QKD) system in existing optical infrastructure and wavelength division multiplexed (WDM) networks. First, we investigate the tolerance of the CV-QKD system to spontaneous Raman scattering (SRS) noise, the latter being the most dominant impairment in a WDM co-existence environment for QKD. In particular, we investigate by experiment the impact of a WDM $10\times 10$ Gb/s ON–OFF-keying signal in terms of induced SRS noise in the QKD channel. The spontaneous SRS noise influence is assessed for different transmission scenarios, i.e., for various optical launch powers of the WDM signal, and for different transmission links of 20, 40, 60, and 80 km. Based on the experimental data and on the measured system’s parameters, we estimate the key rates and reach capabilities of the proposed CV-QKD system. The scheme supports a key rate of 90 kbit/s over 20 km, for an ideal QKD system multiplexed with 2-mW optical power. A step further, we demonstrate for first time the use of the aforementioned CV-QKD system to encrypt a 10GE client service over deployable optical transport network legacy equipment over 20 km. Our results prove the feasibility of the integration of our proposed scheme with legacy telecom equipment in existing WDM optical networks.

Keywords: system; qkd system; qkd; toward integration; quantum key

Journal Title: IEEE Photonics Technology Letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.