LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-Power Single-Longitudinal-Mode DFB Semiconductor Laser Based on Sampled Moiré Grating

Photo from wikipedia

In this mymargin letter, we experimentally demonstrated a 1550-nm high-power single-longitudinal-mode (SLM) distributed feedback (DFB) semiconductor laser based on sampled moiré grating (SMG). By designing the sampling structure with micrometer… Click to show full abstract

In this mymargin letter, we experimentally demonstrated a 1550-nm high-power single-longitudinal-mode (SLM) distributed feedback (DFB) semiconductor laser based on sampled moiré grating (SMG). By designing the sampling structure with micrometer scale, moiré grating (MG) can be equivalently realized along the laser cavity. Then, we can reduce the coupling coefficient near laser facet so as to increase the output power. The cavity length and ridge width of the fabricated laser are 1.0 mm and $3.0~\mu \text{m}$ , respectively. The measured threshold current and the slope efficiency are 30.0 mA and 0.36 mW/mA at the heat-sink temperature of 25 °C, respectively. When the injection current is 800.0 mA, the maximum output power is about 183.0 mW. The saturation power is significantly improved compared with conventional DFB laser with uniform sampled grating (USG), which was fabricated on the same wafer. In addition, a four-channel DFB laser array based on SMG was also fabricated on the same wafer, showing good wavelength uniformity.

Keywords: high power; dfb; power; moir grating; laser; power single

Journal Title: IEEE Photonics Technology Letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.