LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Femtosecond Laser Fabrication of SiC Microlens Arrays as Integrated Light Homogenizer and Splitter

Photo by nci from unsplash

Silicon carbide (SiC) plays a vital role in special optics because of its stable physicochemical and excellent optical properties; however, making the fabrication of SiC considerably more difficult. In this… Click to show full abstract

Silicon carbide (SiC) plays a vital role in special optics because of its stable physicochemical and excellent optical properties; however, making the fabrication of SiC considerably more difficult. In this study, femtosecond laser-assisted inductively coupled plasma etching (ICP) technology is proposed to achieve the efficient fabrication of large-area microlens arrays on the surface of silicon carbide. As an illustration, the microlens array was used for high-quality beam homogenization (uniformity is up to 90%) of the transmitted and reflected Gaussian light beams with a wavelength of 532 nm. The beam-splitting ratio can be dy-namically adjusted (from 1.2 to 3.2) by controlling the angle of the incident light, indicating that the SiC microlens arrays can act as an integrated optical homogenizer and beam splitter. This method demonstrates the broad application prospects of SiC in miniaturized and integrated special optics and provides new ideas for further applications of SiC in integrated optical systems.

Keywords: femtosecond laser; sic microlens; fabrication; microlens arrays; fabrication sic; homogenizer

Journal Title: IEEE Photonics Technology Letters
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.