LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Repeatable Folding Task by Humanoid Robot Worker Using Deep Learning

Photo by hajjidirir from unsplash

We propose a practical state-of-the-art method to develop a machine-learning-based humanoid robot that can work as a production line worker. The proposed approach provides an intuitive way to collect data… Click to show full abstract

We propose a practical state-of-the-art method to develop a machine-learning-based humanoid robot that can work as a production line worker. The proposed approach provides an intuitive way to collect data and exhibits the following characteristics: task performing capability, task reiteration ability, generalizability, and easy applicability. The proposed approach utilizes a real-time user interface with a monitor and provides a first-person perspective using a head-mounted display. Through this interface, teleoperation is used for collecting task operating data, especially for tasks that are difficult to be applied with a conventional method. A two-phase deep learning model is also utilized in the proposed approach. A deep convolutional autoencoder extracts images features and reconstructs images, and a fully connected deep time delay neural network learns the dynamics of a robot task process from the extracted image features and motion angle signals. The “Nextage Open” humanoid robot is used as an experimental platform to evaluate the proposed model. The object folding task utilizing with 35 trained and 5 untrained sensory motor sequences for test. Testing the trained model with online generation demonstrates a 77.8% success rate for the object folding task.

Keywords: humanoid robot; task; deep learning; folding task; worker

Journal Title: IEEE Robotics and Automation Letters
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.