LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Robust Incremental SLAM Under Constrained Optimization Formulation

Photo by austindistel from unsplash

In this letter, we propose a constrained optimization formulation and a robust incremental framework for the simultaneous localization and mapping problem (SLAM). The new SLAM formulation is derived from the… Click to show full abstract

In this letter, we propose a constrained optimization formulation and a robust incremental framework for the simultaneous localization and mapping problem (SLAM). The new SLAM formulation is derived from the nonlinear least squares (NLS) formulation by mathematically formulating loop-closure cycles as constraints. Under the constrained SLAM formulation, we study the robustness of an incremental SLAM algorithm against local minima and outliers as a constraint/loop-closure cycle selection problem. We find a constraint metric that can predict the objective function growth after including the constraint. By the virtue of the constraint metric, we select constraints into the incremental SLAM according to a least objective function growth principle to increase robustness against local minima and perform $\chi ^2$ difference test on the constraint metric to increase robustness against outliers. Finally, using sequential quadratic programming (SQP) as the solver, an incremental SLAM algorithm (iSQP) is proposed. Experimental validations are provided to illustrate the accuracy of the constraint metric and the robustness of the proposed incremental SLAM algorithm. Nonetheless, the proposed approach is currently confined to datasets with sparse loop-closures due to its computational cost.

Keywords: optimization formulation; formulation; incremental slam; constraint; constrained optimization

Journal Title: IEEE Robotics and Automation Letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.