LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Visual-Inertial Localization With Prior LiDAR Map Constraints

Photo from wikipedia

In this letter, we develop a low-cost stereo visual-inertial localization system, which leverages efficient multi-state constraint Kalman filter (MSCKF)-based visual-inertial odometry (VIO) while utilizing an a priori LiDAR map to… Click to show full abstract

In this letter, we develop a low-cost stereo visual-inertial localization system, which leverages efficient multi-state constraint Kalman filter (MSCKF)-based visual-inertial odometry (VIO) while utilizing an a priori LiDAR map to provide bounded-error three-dimensional navigation. Besides the standard sparse visual feature measurements used in VIO, the global registrations of visual semi-dense clouds to the prior LiDAR map are also exploited in a tightly-coupled MSCKF update, thus correcting accumulated drift. This cross-modality constraint between visual and LiDAR pointclouds is particularly addressed. The proposed approach is validated on both Monte Carlo simulations and real-world experiments, showing that LiDAR map constraints between clouds created through different sensing modalities greatly improve the standard VIO and provide bounded-error performance.

Keywords: prior lidar; map constraints; inertial localization; visual inertial; lidar map; map

Journal Title: IEEE Robotics and Automation Letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.