LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Data-Efficient Geometrically Inspired Polynomial Kernel for Robot Inverse Dynamic

Photo from wikipedia

In this letter, we introduce a novel data-driven inverse dynamics estimator based on Gaussian Process Regression. Driven by the fact that the inverse dynamics can be described as a polynomial… Click to show full abstract

In this letter, we introduce a novel data-driven inverse dynamics estimator based on Gaussian Process Regression. Driven by the fact that the inverse dynamics can be described as a polynomial function on a suitable input space, we propose the use of a novel kernel, called Geometrically Inspired Polynomial Kernel (GIP). The resulting estimator behaves similarly to model-based approaches as concerns data efficiency. Indeed, we proved that the GIP kernel defines a finite-dimensional Reproducing Kernel Hilbert Space that contains the inverse dynamics function computed through the Rigid Body Dynamics. The proposed kernel is based on the recently introduced Multiplicative Polynomial Kernel, a redefinition of the classical polynomial kernel equipped with a set of parameters that allows for a higher regularization. We tested the proposed approach in a simulated environment, and also in real experiments with a UR10 robot. The obtained results confirm that, compared to other data-driven estimators, the proposed approach is more data-efficient and exhibits better generalization properties. Instead, with respect to model-based estimators, our approach requires less prior information and is not affected by model bias.

Keywords: inspired polynomial; inverse dynamics; geometrically inspired; data efficient; polynomial kernel; kernel

Journal Title: IEEE Robotics and Automation Letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.