LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A General Framework for Uncertainty Estimation in Deep Learning

Photo by niklas_hamann from unsplash

Neural networks predictions are unreliable when the input sample is out of the training distribution or corrupted by noise. Being able to detect such failures automatically is fundamental to integrate… Click to show full abstract

Neural networks predictions are unreliable when the input sample is out of the training distribution or corrupted by noise. Being able to detect such failures automatically is fundamental to integrate deep learning algorithms into robotics. Current approaches for uncertainty estimation of neural networks require changes to the network and optimization process, typically ignore prior knowledge about the data, and tend to make over-simplifying assumptions which underestimate uncertainty. To address these limitations, we propose a novel framework for uncertainty estimation. Based on Bayesian belief networks and Monte-Carlo sampling, our framework not only fully models the different sources of prediction uncertainty, but also incorporates prior data information, e.g. sensor noise. We show theoretically that this gives us the ability to capture uncertainty better than existing methods. In addition, our framework has several desirable properties: (i) it is agnostic to the network architecture and task; (ii) it does not require changes in the optimization process; (iii) it can be applied to already trained architectures. We thoroughly validate the proposed framework through extensive experiments on both computer vision and control tasks, where we outperform previous methods by up to 23% in accuracy. The video available at https://youtu.be/X7n-bRS5vSM shows qualitative results of our experiments. The project's code is available at: https://tinyurl.com/s3nygw7.

Keywords: framework uncertainty; uncertainty; uncertainty estimation; framework; deep learning

Journal Title: IEEE Robotics and Automation Letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.