LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Multi-Level Optimization Framework for Simultaneous Grasping and Motion Planning

Photo by mbrunacr from unsplash

We present an optimization framework for grasp and motion planning in the context of robotic assembly. Typically, grasping locations are provided by higher level planners or as input parameters. In… Click to show full abstract

We present an optimization framework for grasp and motion planning in the context of robotic assembly. Typically, grasping locations are provided by higher level planners or as input parameters. In contrast, our mathematical model simultaneously optimizes motion trajectories, grasping locations, and other parameters such as the pose of an object during handover operations. The input to our framework consists of a set of objects placed in a known configuration, their target locations, and relative timing information describing when objects need to be picked up, optionally handed over, and dropped off. To allow robots to reason about the way in which grasping locations govern optimal motions, we formulate the problem using a multi-level optimization scheme: the top level optimizes grasping locations; the mid-layer level computes the configurations of the robot for pick, drop and handover states; and the bottom level computes optimal, collision-free motions. We leverage sensitivity analysis to compute derivatives analytically (how do grasping parameters affect IK solutions, and how these, in turn, affect motion trajectories etc.), and devise an efficient numerical solver to generate solutions to the resulting optimization problem. We demonstrate the efficacy of our approach on a variety of assembly and handover tasks performed by a dual-armed robot with parallel grippers.

Keywords: optimization; level; grasping locations; motion planning; optimization framework

Journal Title: IEEE Robotics and Automation Letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.