LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Vision-Based Self-Assembly for Modular Multirotor Structures

Modular aerial robots can adapt their shape to suit a wide range of tasks, but developing efficient self-reconfiguration algorithms is still a challenge. Self-reconfiguration algorithms in the literature rely on… Click to show full abstract

Modular aerial robots can adapt their shape to suit a wide range of tasks, but developing efficient self-reconfiguration algorithms is still a challenge. Self-reconfiguration algorithms in the literature rely on high-accuracy global positioning systems which are not realistic for real-world applications. In this letter, we study self-reconfiguration algorithms using a combination of low-accuracy global positioning systems (e.g., GPS) and on-board relative positioning (e.g. visual sensing) for precise docking actions. We present three algorithms: 1) parallelized self-assembly sequencing that minimizes the number of serial “docking steps”; 2) parallelized self-assembly sequencing that minimizes total distance traveled by modules; and 3) parallelized self-reconfiguration that breaks an initial structure down as little as possible before assembling a new structure. The algorithms take into account the constraints of the local sensors and use heuristics to provide a computationally efficient solution for the combinatorial problem. Our evaluation in 2-D and 3-D simulations show that the algorithms scale with the number of modules and structure shape.

Keywords: self reconfiguration; parallelized self; reconfiguration algorithms; self assembly; self

Journal Title: IEEE Robotics and Automation Letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.