LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhancing Lattice-Based Motion Planning With Introspective Learning and Reasoning

Photo from wikipedia

Lattice-based motion planning is a hybrid planning method where a plan is made up of discrete actions, while simultaneously also being a physically feasible trajectory. The planning takes both discrete… Click to show full abstract

Lattice-based motion planning is a hybrid planning method where a plan is made up of discrete actions, while simultaneously also being a physically feasible trajectory. The planning takes both discrete and continuous aspects into account, for example action pre-conditions and collision-free action-duration in the configuration space. Safe motion planning rely on well-calibrated safety-margins for collision checking. The trajectory tracking controller must further be able to reliably execute the motions within this safety margin for the execution to be safe. In this work we are concerned with introspective learning and reasoning about controller performance over time. Normal controller execution of the different actions is learned using machine learning techniques with explicit uncertainty quantification, for safe usage in safety-critical applications. By increasing the model accuracy the safety margins can be reduced while maintaining the same safety as before. Reasoning takes place to both verify that the learned models stays safe and to improve collision checking effectiveness in the motion planner using more accurate execution predictions with a smaller safety margin. The presented approach allows for explicit awareness of controller performance under normal circumstances, and detection of incorrect performance in abnormal circumstances. Evaluation is made on the nonlinear dynamics of a quadcopter in 3D using simulation.

Keywords: based motion; lattice based; motion planning; introspective learning; safety; motion

Journal Title: IEEE Robotics and Automation Letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.