LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bench-MR: A Motion Planning Benchmark for Wheeled Mobile Robots

Photo from wikipedia

Planning smooth and energy-efficient paths for wheeled mobile robots is a central task for applications ranging from autonomous driving to service and intralogistic robotics. Over the past decades, several sampling-based… Click to show full abstract

Planning smooth and energy-efficient paths for wheeled mobile robots is a central task for applications ranging from autonomous driving to service and intralogistic robotics. Over the past decades, several sampling-based motion-planning algorithms, extend functions and post-smoothing algorithms have been introduced for such motion-planning systems. Choosing the best combination of components for an application is a tedious exercise, even for expert users. We therefore present Bench-MR, the first open-source motion-planning benchmarking framework designed for sampling-based motion planning for nonholonomic, wheeled mobile robots. Unlike related software suites, Bench-MR is an easy-to-use and comprehensive benchmarking framework that provides a large variety of sampling-based motion-planning algorithms, extend functions, collision checkers, post-smoothing algorithms and optimization criteria. It aids practitioners and researchers in designing, testing, and evaluating motion-planning systems, and comparing them against the state of the art on complex navigation scenarios through many performance metrics. Through several experiments, we demonstrate how Bench-MR can be used to gain extensive insights from the benchmarking results it generates.

Keywords: robotics; wheeled mobile; sampling based; motion planning; mobile robots; motion

Journal Title: IEEE Robotics and Automation Letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.