LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Topo-Boundary: A Benchmark Dataset on Topological Road-Boundary Detection Using Aerial Images for Autonomous Driving

Photo from wikipedia

Road-boundary detection is important for autonomous driving. It can be used to constrain autonomous vehicles running on road areas to ensure driving safety. Compared with online road-boundary detection using on-vehicle… Click to show full abstract

Road-boundary detection is important for autonomous driving. It can be used to constrain autonomous vehicles running on road areas to ensure driving safety. Compared with online road-boundary detection using on-vehicle cameras/Lidars, offline detection using aerial images could alleviate the severe occlusion issue. Moreover, the offline detection results can be directly employed to annotate high-definition (HD) maps. In recent years, deep-learning technologies have been used in offline detection. But there still lacks a publicly available dataset for this task, which hinders the research progress in this area. So in this letter, we propose a new benchmark dataset, named Topo-boundary, for offline topological road-boundary detection. The dataset contains 25,295 $1000\times 1000$-sized 4-channel aerial images. Each image is provided with 8 training labels for different sub-tasks. We also design a new entropy-based metric for connectivity evaluation, which could better handle noises or outliers. We implement and evaluate 3 segmentation-based baselines and 5 graph-based baselines using the dataset. We also propose a new imitation-learning-based baseline which is enhanced from our previous work. The superiority of our enhancement is demonstrated from the comparison. The dataset and our-implemented code for the baselines are available at https://tonyxuqaq.github.io/Topo-boundary/.

Keywords: road boundary; dataset; detection using; boundary detection; detection

Journal Title: IEEE Robotics and Automation Letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.