LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

3-D Electromagnetic Position Estimation System Using High-Magnetic-Permeability Metal for Continuum Medical Robots

Photo by drew_hays from unsplash

In this letter, a new 3-D electromagnetic position sensing method is proposed for localization of continuum medical robots. An electromagnet and magnetic sensors are placed outside the human body while… Click to show full abstract

In this letter, a new 3-D electromagnetic position sensing method is proposed for localization of continuum medical robots. An electromagnet and magnetic sensors are placed outside the human body while only a piece of passive mu-metal with high magnetic permeability is attached to the robot moving inside the body, resulting in a wireless non-contacting position estimation system. The mu-metal gets easily magnetized by the electromagnet and thus exerts position-dependent influence on the external magnetic field, which is measured for position estimation using a particle filter. An alternating magnetic field from the electromagnet is used and hence disturbances from nearby ferromagnetic objects can be rejected. The 3-D position estimation system is evaluated on a flexible trans-esophageal robot for ultrasound imaging with motions of insertion and maneuver. Experiments show that the mean position estimation error is about 5 mm and the system is robust in the presence of magnetic disturbances from a ferromagnetic object. This new wireless and robust 3-D position estimation system is demonstrated to have the potential to localize a continuum medical robot, which can enable autonomous navigation of the robot.

Keywords: continuum medical; position estimation; position; estimation system

Journal Title: IEEE Robotics and Automation Letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.