LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design and Kinematic Modeling of In-Situ Torsionally-Steerable Flexible Surgical Robots

Photo from wikipedia

Flexible robots have been widely used in minimally invasive surgery because of their dexterity and accuracy. However, the torsion of end-effector under bending state usually produces unnecessary concomitant motion of… Click to show full abstract

Flexible robots have been widely used in minimally invasive surgery because of their dexterity and accuracy. However, the torsion of end-effector under bending state usually produces unnecessary concomitant motion of the robot arm. This paper proposes a novel design of in-situ torsionally-steerable tendon-driven flexible robots for otolaryngology surgery. This kind of robots have three motion modes: pure torsion, pure bending and fusion modes. Among them, the fusion mode provides a novel in-situ torsional motion which can maintain the position and approach vector of the end-effector during the operation. A constant curvature-based kinematic model has been presented to handle different motion modes. Finite element analysis (FEA), numerical simulations and experiments have been conducted to test the robot design and the proposed model. The FEA shows that the maximum torsional deformations are 0.114 mm and 0.908 mm for straight and maximum bending configurations, respectively. The position, rotation and direction errors of the prototype are 1.53 mm, 2.08 deg and 2.71 deg, respectively. The results indicate that the proposed flexible surgical robots are feasible for in-situ torsional motion.

Keywords: motion; design; situ torsionally; surgical robots; flexible surgical; torsionally steerable

Journal Title: IEEE Robotics and Automation Letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.