LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Category-Association Based Similarity Matching for Novel Object Pick-and-Place Task

Robotic pick-and-place has been researched for a long time to cope with uncertainty of novel objects and changeable environments. Past works mainly focus on learning-based methods to achieve high precision.… Click to show full abstract

Robotic pick-and-place has been researched for a long time to cope with uncertainty of novel objects and changeable environments. Past works mainly focus on learning-based methods to achieve high precision. However, they have difficulty being generalized for the limitation of specified training models. To break through this drawback of learning-based approaches, we introduce a new perspective of similarity matching between novel objects and a known database based on category-association to achieve pick-and-place tasks with high accuracy and stabilization. We calculate the category name similarity using word embedding to quantify the semantic similarity between the categories of known models and the target real-world objects. With a similar model identified by a similarity prediction function, we preplan a series of robust grasps and imitate them to plan new grasps on the real-world target object. We also propose a distance-based method to infer the in-hand posture of objects and adjust small rotations to achieve stable placements under uncertainty. Through a real-world robotic pick-and-place experiment with a dozen of in-category and out-of-category novel objects, our method achieved an average success rate of 90.6% and 75.9% respectively, validating the capacity of generalization to diverse objects.

Keywords: pick place; similarity matching; similarity; category

Journal Title: IEEE Robotics and Automation Letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.