Humans rely on distributed tactile sensing in their hands to achieve robust and dexterous manipulation of delicate objects. Soft robotic hands have received increased attention in recent years due to… Click to show full abstract
Humans rely on distributed tactile sensing in their hands to achieve robust and dexterous manipulation of delicate objects. Soft robotic hands have received increased attention in recent years due to their adaptability to unknown objects and safe interactions with the environment. However, the integration of distributed sensing in soft robotic hands is lacking. This is largely due to the complexity in the integration of soft sensing solutions with the hands. This letter proposes a novel soft robotic hand that incorporates an active palm and distributed pneumatic tactile sensing in both the fingers and the palm. Multi-material 3D printing allows the tactile sensors to be directly printed on the hand, whereas conventional tactile approaches require the sensors to be attached as part of multiple fabrication procedures. Active degrees of freedom are introduced in the palm to achieve increased dexterity. The proposed hand successfully performed 32 of the 33 Feix taxonomy grasps and all 11 Kapandji thumb opposition poses.
               
Click one of the above tabs to view related content.