LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

RRT*-Based Path Planning for Continuum Arms

Photo by joelfilip from unsplash

Continuum arms are bio-inspired devices that exhibit continuous, smooth bending and generate motion through structural deformation. Rapidly-exploring random trees (RRT) is a traditional approach for performing efficient path planning. RRT… Click to show full abstract

Continuum arms are bio-inspired devices that exhibit continuous, smooth bending and generate motion through structural deformation. Rapidly-exploring random trees (RRT) is a traditional approach for performing efficient path planning. RRT approaches are usually based on exploring the configuration space (C-Space) of the robot to find a desirable work space (W-Space) path. Due to the complex kinematics and the highly non-linear mapping between the C-Space and W-Space of continuum arms, a high-quality path in the C-Space (e.g., a linear path) may not correspond to a desirable path/movement in the W-Space. Consequently, the C-Space RRT approaches that are based on C-Space cost functions do not lead to reliable and effective path planning when applied to continuum arms. In this letter, we propose a RRT* path planning approach for continuum arms that is based on exploring the W-Space of the robot as opposed to its C-Space. We show the successful applications of the proposed W-Space RRT* path planner in performing path planning with obstacle avoidance and in performing trajectory tracking. In all the aforementioned tasks, the quality of the paths generated by the proposed planner is superior to that of previous approaches and to its counterpart C-Space based RRT* approach, while the paths are generated in substantially less time.

Keywords: continuum arms; space; path planning; path

Journal Title: IEEE Robotics and Automation Letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.