LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhancing Gait Assistance Control Robustness of a Hip Exosuit by Means of Machine Learning

Photo from wikipedia

Optimally synchronising the assistance provided by wearable devices with the human voluntary motion is still an open challenge in robotics. In order to provide accurate and robust assistance, this paper… Click to show full abstract

Optimally synchronising the assistance provided by wearable devices with the human voluntary motion is still an open challenge in robotics. In order to provide accurate and robust assistance, this paper presents a novel approach that combines a layered implementation of a controller for an underactuated exosuit assisting hip flexion during human locomotion: the first layer is based on Adaptive Oscillators (AOs layer), while the second one uses Machine Learning (ML layer). The latter has been introduced to enhance the robustness of the AOs-based controller in abrupt changes of the gait frequency, with the final goal to achieve higher synchronisation and symbiosis between the user and assistive devices in presence of variable and unpredictable locomotion patterns. The effectiveness of the layered controller has been tested on six healthy subjects. Preliminary results suggested that the additional ML layer provided improvement to the overall performances during overground walking. In addition, we found a reduction of metabolic rates when receiving assistance from the device: 7.4% on average on treadmill evaluations and 10% overground including the extra ML layer, without alteration of the physiological human motion.

Keywords: assistance; machine learning; hip; exosuit; robustness

Journal Title: IEEE Robotics and Automation Letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.