This letter studies the safety control problem for mobile robots working in cluttered environments. A compact set is employed to represent the obstacles, and a direction-distance function is used to… Click to show full abstract
This letter studies the safety control problem for mobile robots working in cluttered environments. A compact set is employed to represent the obstacles, and a direction-distance function is used to describe the obstacle-measurement model. The major contribution is a nontrivial modification of the quadratic programming (QP) approach for continuous safety control of integrator-modeled mobile robots. In particular, a refinement of the Moreau-Yosida method is proposed to regularize the measurement model while retaining feasibility and safety. The second contribution is the development of a new feasible set shaping technique with a positive basis for a QP-based continuous safety controller. Physical experiments are employed to verify the proposed method.
               
Click one of the above tabs to view related content.