LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Force Sharing Problem During Gait Using Inverse Optimal Control

Photo by charlesdeluvio from unsplash

Human gait patterns have been intensively studied, both from medical and engineering perspectives, to understand and compensate pathologies. However, the muscle-force sharing problem is still debated as acquiring individual muscle… Click to show full abstract

Human gait patterns have been intensively studied, both from medical and engineering perspectives, to understand and compensate pathologies. However, the muscle-force sharing problem is still debated as acquiring individual muscle force measurements is challenging, requiring the use of invasive devices. Recent studies, using various objective functions, suggest muscle-force sharing may result from an optimization process. This study proposes using inverse optimal control to identify an objective function. Two popular methods of inverse optimal control, bilevel and inverse Karush-Kuhn-Tucker, were investigated. The identified objective functions were then used to predict muscle forces during gait, and their performances were compared to an exhaustive list of biological cost functions from the literature. The best prediction was achieved by the bilevel inverse optimal control method, with a root-mean-squared error of 176 N (162 N) and a correlation coefficient of 0.76 (0.68) for the stance (swing) phase of the gait cycle. These muscle force predictions were thereafter used to compute joint stiffness, exhibiting an average root-mean-square error of 42 Nm.rad$^{-1}$ and a correlation coefficient of 0.90 when compared to the reference. The bilevel method's prevalence in terms of robustness over inverse Karush-Kuhn-Tucker was demonstrated on human data and explained on a toy example.

Keywords: force sharing; optimal control; inverse optimal; gait

Journal Title: IEEE Robotics and Automation Letters
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.