LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Self-Supervised Feature Learning for Long-Term Metric Visual Localization

Photo by lukejonesdesign from unsplash

Visual localization is the task of estimating camera pose in a known scene, which is an essential problem in robotics and computer vision. However, long-term visual localization is still a… Click to show full abstract

Visual localization is the task of estimating camera pose in a known scene, which is an essential problem in robotics and computer vision. However, long-term visual localization is still a challenge due to the environmental appearance changes caused by lighting and seasons. While techniques exist to address appearance changes using neural networks, these methods typically require ground-truth pose information to generate accurate image correspondences or act as a supervisory signal during training. In this paper, we present a novel self-supervised feature learning framework for metric visual localization. We use a sequence-based image matching algorithm across different sequences of images (i.e., experiences) to generate image correspondences without ground-truth labels. We can then sample image pairs to train a deep neural network that learns sparse features with associated descriptors and scores without ground-truth pose supervision. The learned features can be used together with a classical pose estimator for visual stereo localization. We validate the learned features by integrating with an existing Visual Teach & Repeat pipeline to perform closed-loop localization experiments under different lighting conditions for a total of 22.4 km.

Keywords: long term; localization; visual localization; supervised feature; self supervised; feature learning

Journal Title: IEEE Robotics and Automation Letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.