LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

OPA-3D: Occlusion-Aware Pixel-Wise Aggregation for Monocular 3D Object Detection

Photo from wikipedia

Monocular 3D object detection has recently made a significant leap forward thanks to the use of pre-trained depth estimators for pseudo-LiDAR recovery. Yet, such two-stage methods typically suffer from overfitting… Click to show full abstract

Monocular 3D object detection has recently made a significant leap forward thanks to the use of pre-trained depth estimators for pseudo-LiDAR recovery. Yet, such two-stage methods typically suffer from overfitting and are incapable of explicitly encapsulating the geometric relation between depth and object bounding box. To overcome this limitation, we instead propose to jointly estimate dense scene depth with depth-bounding box residuals and object bounding boxes, allowing a two-stream detection of 3D objects that harnesses both geometry and context information. Thereby, the geometry stream combines visible depth and depth-bounding box residuals to recover the object bounding box via explicit occlusion-aware optimization. In addition, a bounding box based geometry projection scheme is employed in an effort to enhance distance perception. The second stream, named as the Context Stream, directly regresses 3D object location and size. This novel two-stream representation enables us to enforce cross-stream consistency terms, which aligns the outputs of both streams, and further improves the overall performance. Extensive experiments on the public benchmark demonstrate that OPA-3D outperforms state-of-the-art methods on the main Car category, whilst keeping a real-time inference speed.

Keywords: monocular object; stream; geometry; detection; bounding box

Journal Title: IEEE Robotics and Automation Letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.