LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

ESVIO: Event-Based Stereo Visual Inertial Odometry

Photo from wikipedia

Event cameras that asynchronously output low-latency event streams provide great opportunities for state estimation under challenging situations. Despite event-based visual odometry having been extensively studied in recent years, most of… Click to show full abstract

Event cameras that asynchronously output low-latency event streams provide great opportunities for state estimation under challenging situations. Despite event-based visual odometry having been extensively studied in recent years, most of them are based on the monocular, while few research on stereo event vision. In this letter, we present ESVIO, the first event-based stereo visual-inertial odometry, which leverages the complementary advantages of event streams, standard images, and inertial measurements. Our proposed pipeline includes the ESIO (purely event-based) and ESVIO (event with image-aided), which achieves spatial and temporal associations between consecutive stereo event streams. A well-design back-end tightly-coupled fused the multi-sensor measurement to obtain robust state estimation. We validate that both ESIO and ESVIO have superior performance compared with other image-based and event-based baseline methods on public and self-collected datasets. Furthermore, we use our pipeline to perform onboard quadrotor flights under low-light environments. Autonomous driving data sequences and real-world large-scale experiments are also conducted to demonstrate long-term effectiveness. We highlight that this work is a real-time, accurate system that is aimed at robust state estimation under challenging environments.

Keywords: odometry; event; visual inertial; stereo visual; based stereo; event based

Journal Title: IEEE Robotics and Automation Letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.