LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Intrinsic Cramér–Rao Bounds for Scatter and Shape Matrices Estimation in CES Distributions

Photo by sunyu from unsplash

Scatter matrix and its normalized counterpart, referred to as shape matrix, are key parameters in multivariate statistical signal processing, as they generalize the concept of covariance matrix in the widely… Click to show full abstract

Scatter matrix and its normalized counterpart, referred to as shape matrix, are key parameters in multivariate statistical signal processing, as they generalize the concept of covariance matrix in the widely used Complex Elliptically Symmetric distributions. Following the framework of [1], intrinsic Cramér–Rao bounds are derived for the problem of scatter and shape matrices estimation with samples following a Complex Elliptically Symmetric distribution. The Fisher Information Metric and its associated Riemannian distance (namely, CES-Fisher) on the manifold of Hermitian positive definite matrices are derived. Based on these results, intrinsic Cramér–Rao bounds on the considered problems are then expressed for three different distances (Euclidean, natural Riemannian, and CES-Fisher). These contributions are therefore a generalization of Theorems 4 and 5 of [1] to a wider class of distributions and metrics for both scatter and shape matrices.

Keywords: shape matrices; shape; intrinsic cram; cram rao; rao bounds; scatter shape

Journal Title: IEEE Signal Processing Letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.