We introduce multi-lane capsule networks (MLCN), which are a separable and resource efficient organization of capsule networks (CapsNet) that allows parallel processing while achieving high accuracy at reduced cost. A… Click to show full abstract
We introduce multi-lane capsule networks (MLCN), which are a separable and resource efficient organization of capsule networks (CapsNet) that allows parallel processing while achieving high accuracy at reduced cost. A MLCN is composed of a number of (distinct) parallel lanes, each contributing to a dimension of the result, trained using the routing-by-agreement organization of CapsNet. Our results indicate similar accuracy with a much-reduced cost in number of parameters for the Fashion-MNIST and Cifar10 datasets. They also indicate that the MLCN outperforms the original CapsNet when using a proposed novel configuration for the lanes. MLCN also has faster training and inference times, being more than two-fold faster than the original CapsNet in a same accelerator.
               
Click one of the above tabs to view related content.