LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Compressed Super-Resolution of Positive Sources

Photo from wikipedia

Atomic norm minimization is a convex optimization framework to recover point sources from a subset of their low-pass observations, or equivalently the underlying frequencies of a spectrally-sparse signal. When the… Click to show full abstract

Atomic norm minimization is a convex optimization framework to recover point sources from a subset of their low-pass observations, or equivalently the underlying frequencies of a spectrally-sparse signal. When the amplitudes of the sources are positive, a positive atomic norm can be formulated, and exact recovery can be ensured without imposing a separation between the sources, as long as the number of observations is greater than the number of sources. However, the classic formulation of the atomic norm requires to solve a semidefinite program involving a linear matrix inequality of a size on the order of the signal dimension, which can be prohibitive. In this letter, we introduce a novel “compressed” semidefinite program, which involves a linear matrix inequality of a reduced dimension on the order of the number of sources. We guarantee the tightness of this program under certain conditions on the operator involved in the dimensionality reduction. Finally, we apply the proposed method to direction finding over sparse arrays based on second-order statistics and achieve significant computational savings.

Keywords: compressed super; super resolution; positive sources; resolution positive; atomic norm

Journal Title: IEEE Signal Processing Letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.