LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exponential Hyperbolic Cosine Robust Adaptive Filters for Audio Signal Processing

Photo by yanamrdv from unsplash

In recent years, correntropy-based algorithms which include maximum correntropy criterion (MCC), generalized MCC (GMCC), kernel MCC (KMCC) and hyperbolic cosine function-based algorithms such as hyperbolic cosine adaptive filter (HCAF), logarithmic… Click to show full abstract

In recent years, correntropy-based algorithms which include maximum correntropy criterion (MCC), generalized MCC (GMCC), kernel MCC (KMCC) and hyperbolic cosine function-based algorithms such as hyperbolic cosine adaptive filter (HCAF), logarithmic HCAF (LHCAF), least lncosh (Llncosh) have been widely utilized in adaptive filtering due to their robustness towards non-Gaussian/impulsive background noises. However, the performance of such algorithms suffers from high steady-state misalignment. To minimize the steady-state misalignment along with having comparable computational complexity, an exponential hyperbolic cosine function (EHCF) based new robust norm is introduced and a corresponding EHCF based adaptive filter called exponential hyperbolic cosine adaptive filter (EHCAF) is developed in this letter. Further, computational complexity and bound on learning rate for stability of the proposed algorithm is also studied. A set of simulation studies has been carried out for system identification scenario to assess the performance of the proposed algorithm. Further, EHCAF algorithm has been extended and the filtered-x EHCAF (Fx-EHCAF) algorithm is proposed for robust room equalization.

Keywords: hyperbolic cosine; ehcaf; exponential hyperbolic; signal processing; cosine

Journal Title: IEEE Signal Processing Letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.