LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cross-Epoch Learning for Weakly Supervised Anomaly Detection in Surveillance Videos

Weakly Supervised Anomaly Detection (WSAD) in surveillance videos is a complex task since usually only video-level annotations are available. Previous work treated it as a regression problem by giving different… Click to show full abstract

Weakly Supervised Anomaly Detection (WSAD) in surveillance videos is a complex task since usually only video-level annotations are available. Previous work treated it as a regression problem by giving different scores on normal and anomaly events. However, the widely used mini-batch training strategy may suffer from the data imbalance between these two types of events, which limits the model's performance. In this work, a cross-epoch learning (XEL) strategy associated with a hard instance bank (HIB) is proposed to introduce additional information from previous training epochs. Two new losses are proposed for XEL to achieve a higher detection rate as well as a lower false alarm rate of anomaly events. Moreover, the proposed XEL can be directly integrated into any existing WSAD framework. Experimental results of three XEL embedded models have shown promising AUC improvement (3%∼7%) on two public datasets, surpassing the state-of-the-art methods. Our code is available at: https://github.com/sdjsngs/XEL-WSAD.

Keywords: detection; weakly supervised; anomaly detection; surveillance videos; cross epoch; supervised anomaly

Journal Title: IEEE Signal Processing Letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.