LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modified Multi-Direction Iterative Algorithm for Separable Nonlinear Models With Missing Data

Photo from wikipedia

Multi-direction iterative (MUL-DI) algorithm is an efficient algorithm for large-scale models, and it establishes a theoretical linkage between least squares (LS) and gradient descent (GD) algorithms. However, it involves Givens… Click to show full abstract

Multi-direction iterative (MUL-DI) algorithm is an efficient algorithm for large-scale models, and it establishes a theoretical linkage between least squares (LS) and gradient descent (GD) algorithms. However, it involves Givens transformation and dense matrix calculation in each iteration, which leads to heavy computational efforts. In this letter, a modified MUL-DI algorithm is proposed for separable nonlinear models with missing data. Several directions are designed using a diagonal matrix, and their corresponding step-sizes are obtained based on LS algorithm. Compared with the traditional algorithms, the algorithm proposed in this letter has the following advantages: (1) has a faster convergence rate; (2) has a simple cost function; (3) is more robust to the condition number; (4) has less computational efforts. A simulation example shows the effectiveness of the modified MUL-DI algorithm.

Keywords: models missing; direction iterative; algorithm; separable nonlinear; nonlinear models; multi direction

Journal Title: IEEE Signal Processing Letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.