LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fractional Fourier Transform in Time Series Prediction

Photo from wikipedia

Several signal processing tools are integrated into machine learning models for performance and computational cost improvements. Fourier transform (FT) and its variants, which are powerful tools for spectral analysis, are… Click to show full abstract

Several signal processing tools are integrated into machine learning models for performance and computational cost improvements. Fourier transform (FT) and its variants, which are powerful tools for spectral analysis, are employed in the prediction of univariate time series by converting them to sequences in the spectral domain to be processed further by recurrent neural networks (RNNs). This approach increases the prediction performance and reduces training time compared to conventional methods. In this letter, we introduce fractional Fourier transform (FrFT) to time series prediction by RNNs. As a parametric transformation, FrFT allows us to seek and select better-performing transformation domains by providing access to a continuum of domains between time and frequency. This flexibility yields significant improvements in the prediction power of the underlying models without sacrificing computational efficiency. We evaluated our FrFT-based time series prediction approach on synthetic and real-world datasets. Our results show that FrFT gives rise to performance improvements over ordinary FT.

Keywords: time; time series; fourier transform; series prediction; prediction

Journal Title: IEEE Signal Processing Letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.