LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep Image Registration With Depth-Aware Homography Estimation

Photo by ldxcreative from unsplash

Image registration is a basic task in computer vision, for its wide potential applications in image stitching, stereo vision, motion estimation, and etc. Most current methods achieve image registration by… Click to show full abstract

Image registration is a basic task in computer vision, for its wide potential applications in image stitching, stereo vision, motion estimation, and etc. Most current methods achieve image registration by estimating a global homography matrix between candidate images with point-feature-based matching or direct prediction. However, as real-world 3D scenes have point-variant photograph distances (depth), a unified homography matrix is not sufficient to depict the specific pixel-wise relations between two images. Some researchers try to alleviate this problem by predicting multiple homography matrixes for different patches or segmentation areas in images; in this letter, we tackle this problem with further refinement, i.e. matching images with pixel-wise, depth-aware homography estimation. Firstly, we construct an efficient convolutional network, the DPH-Net, to predict the essential parameters causing image deviation, the rotation ($R$) and translation ($T$) of cameras. Then, we feed-in an image depth map for the calculation of initial pixel-wise homography matrixes, which are refined with an online optimization scheme. Finally, with the estimated pixel-specific homography parameters, pixel correspondences between candidate images can be easily computed for registration. Compared with state-of-the-art image registration algorithms, the proposed DPH-Net has the highest performance of 0.912 EPE and 0.977 SSIM, demonstrating the effectiveness of adding depth information and estimating pixel-wise homography into the image registration process.

Keywords: depth; image registration; homography; estimation; image

Journal Title: IEEE Signal Processing Letters
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.