LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Joint Separation and Localization of Moving Sound Sources Based on Neural Full-Rank Spatial Covariance Analysis

Photo from wikipedia

This paper presents an unsupervised multichannel method that can separate moving sound sources based on an amortized variational inference (AVI) of joint separation and localization. A recently proposed blind source… Click to show full abstract

This paper presents an unsupervised multichannel method that can separate moving sound sources based on an amortized variational inference (AVI) of joint separation and localization. A recently proposed blind source separation (BSS) method called neural full-rank spatial covariance analysis (FCA) trains a neural separation model based on a nonlinear generative model of multichannel mixtures and can precisely separate unseen mixture signals. This method, however, assumes that the sound sources hardly move, and thus its performance is easily degraded by the source movements. In this paper, we solve this problem by introducing time-varying spatial covariance matrices and directions of arrival of sources into the nonlinear generative model of the neural FCA. This generative model is used for training a neural network to jointly separate and localize moving sources by using only multichannel mixture signals and array geometries. The training objective is derived as a lower bound on the log-marginal posterior probability in the framework of AVI. Experimental results obtained with mixture signals of moving sources show that our method outperformed an existing joint separation and localization method and standard BSS methods.

Keywords: sound sources; spatial covariance; separation localization; separation; joint separation

Journal Title: IEEE Signal Processing Letters
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.