LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Weighted Sum Power Maximization for Intelligent Reflecting Surface Aided SWIPT

Photo by mbrunacr from unsplash

The low efficiency of far-field wireless power transfer (WPT) limits the fundamental rate-energy (R-E) performance trade-off of the simultaneous wireless information and power transfer (SWIPT) system. To address this challenge,… Click to show full abstract

The low efficiency of far-field wireless power transfer (WPT) limits the fundamental rate-energy (R-E) performance trade-off of the simultaneous wireless information and power transfer (SWIPT) system. To address this challenge, we propose in this letter a new SWIPT system aided by the emerging intelligent reflecting surface (IRS) technology. By leveraging massive low-cost passive elements that are able to reflect the signals with adjustable phase shifts, IRS achieve a high passive beamforming gain, which is appealing for drastically enhancing the WPT efficiency and thereby the R-E trade-off of SWIPT systems. We consider an IRS being deployed to assist a multi-antenna access point (AP) to serve multiple information decoding receivers (IDRs) and energy harvesting receivers (EHRs). We aim to maximize the weighted sum-power received by EHRs via jointly optimizing the transmit precoders at the AP and reflect phase shifts at the IRS, subject to the individual signal-to-interference-plus-noise ratio (SINR) constraints for IDRs. Since this problem is non-convex, we propose efficient algorithms to obtain suboptimal solutions for it. In particular, we prove that it is sufficient to send information signals only at the AP to serve both IDRs and EHRs regardless of their channel realizations. Moreover, simulation results show significant performance gains achieved by our proposed designs over benchmark schemes.

Keywords: swipt; sum power; intelligent reflecting; power; reflecting surface; weighted sum

Journal Title: IEEE Wireless Communications Letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.