LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

SecureLinQ: Joint Precoding and Scheduling for Secure Device-to-Device Networks

Photo from wikipedia

We propose joint design on precoding and scheduling for secure device-to-device networks, wherein transmitters (TXs) send confidential messages to associated receivers (RXs) while the eavesdroppers seek to wiretap the messages.… Click to show full abstract

We propose joint design on precoding and scheduling for secure device-to-device networks, wherein transmitters (TXs) send confidential messages to associated receivers (RXs) while the eavesdroppers seek to wiretap the messages. To this end, we solve a network sum secrecy spectral efficiency (SE) maximization problem. The main challenges are: ${i}$ ) the problem is non-convex and $ii$ ) the secrecy SE is not smooth with the presence of multiple eavesdroppers. To address the difficulties, we first approximate the secrecy SE by exploiting a smooth maximum function and transform the original problem into a tractable non-convex form. Subsequently, we propose a low-complexity algorithm to find a sub-optimal solution, referred as SecureLinQ. Simulation results validate the performance of SecureLinQ.

Keywords: scheduling secure; secure device; device networks; precoding scheduling; device device; device

Journal Title: IEEE Wireless Communications Letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.