LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep Learning Aided Two-Stage Multi-Finger Beam Training in Millimeter-Wave Communication

Photo from wikipedia

Agile and reliable alignment of transceiver beams is crucial to support high transmission rate in millimeter-wave (mmWave) communications. In this letter, a deep learning aided two-stage multi-finger beam training (DL-TSMBT)… Click to show full abstract

Agile and reliable alignment of transceiver beams is crucial to support high transmission rate in millimeter-wave (mmWave) communications. In this letter, a deep learning aided two-stage multi-finger beam training (DL-TSMBT) algorithm is proposed for beam alignment purpose. In the first stage, a multi-finger beam based coarse scanning strategy is proposed to take a limited number of initial measurements, which are then fed into a customized convolutional neural network for feature extraction and candidate beam selection. In the second stage, the candidate beams are further trained to refine the beam selection. Numerical results validate the effectiveness of the DL-TSMBT proposed and show that DL-TSMBT outperforms several state-of-the-art traditional beam training baselines and a data-driven wide-beam training baseline, both in terms of misalignment probability and achievable spectrum efficiency.

Keywords: beam; beam training; multi finger; stage multi

Journal Title: IEEE Wireless Communications Letters
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.