This letter considers the problem of end-to-end (E2E) learning for joint optimization of transmitter precoding and receiver processing for mmWave downlink positioning. Considering a multiple-input single-output (MISO) scenario, we propose… Click to show full abstract
This letter considers the problem of end-to-end (E2E) learning for joint optimization of transmitter precoding and receiver processing for mmWave downlink positioning. Considering a multiple-input single-output (MISO) scenario, we propose a novel autoencoder (AE) architecture to estimate user equipment (UE) position with multiple base stations (BSs) and demonstrate that E2E learning can match model-based design, both for angle-of-departure (AoD) and position estimation, under ideal conditions without model deficits and outperform it in the presence of hardware impairments.
               
Click one of the above tabs to view related content.