LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Challenges and Solutions for Antennas in Vehicle-to-Everything Services

Photo from wikipedia

Autonomous vehicle is being developed for widespread deployment. Its reliability and safety are critically dependent on advanced wireless technologies, e.g., vehicle-to-everything (V2X) communication. The frontend of a V2X system needs… Click to show full abstract

Autonomous vehicle is being developed for widespread deployment. Its reliability and safety are critically dependent on advanced wireless technologies, e.g., vehicle-to-everything (V2X) communication. The frontend of a V2X system needs an antenna module that enables the vehicle to reliably connect to all other networks. Designing V2X antenna is challenging due to the complex in-vehicle environment, trend for hidden antenna solution, long simulation time and need for omnidirectional coverage. In this article, we survey these challenges as well as existing V2X antenna solutions. In view of the drawbacks in the existing solutions, we propose an efficient design methodology for V2X antennas to provide the desired coverage. The method utilizes a simple geometrical model of the vehicle that captures the shadowing effects of the vehicle body to obtain candidate antenna locations that offer the best coverage via multi-antenna diversity. Hence, complex full-wave simulation can be avoided. The approach is validated through comprehensive full-wave simulations and pattern measurements on two car models. The results confirm that, at 5.9GHz, line-of-sight shadowing has more dominant effect on the received power than multipath propagation due to the car body. In cases of strong diffraction and surface waves, a simple rule-of-thumb can be devised to improve the accuracy of the method.

Keywords: vehicle everything; challenges solutions; v2x; solutions antennas; vehicle

Journal Title: IEEE Communications Magazine
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.