LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-Data-Rate Long-Range Underwater Communications via Acoustic Reconfigurable Intelligent Surfaces

Photo from wikipedia

Despite decades-long development, underwater communication systems still cannot achieve high data rates and long communication ranges at the same time (i.e., beyond 1 Mb/s and 1 km). Currently, acoustic communication… Click to show full abstract

Despite decades-long development, underwater communication systems still cannot achieve high data rates and long communication ranges at the same time (i.e., beyond 1 Mb/s and 1 km). Currently, acoustic communication is the only choice to achieve long distances. However, the inherent low acoustic bandwidth results in extremely low data rates. In this article, the acoustic reconfigurable intelligent surface (RIS) system is proposed to realize high-data-rate long-range underwater communications. Although the EM-based RIS has been widely investigated in terrestrial scenarios in recent years, the underwater acoustic RIS is based on completely different physics principles. Hence, the EM-based terrestrial RISs do not work for underwater acoustic signals. More-over, the long acoustic wave propagation delay, the inherent wideband nature, and the water behavior all impose unique challenges in underwater RIS operation. Therefore, this article presents a new hardware design to realize acoustic RIS, based on which the underwater RIS operation protocols are developed to address the aforementioned challenges. The proposed acoustic RIS system can be considered as an underwater infrastructure that enables beamforming functionalities for all types of devices, especially small robots and low-cost sensors. The simulation results show that the proposed acoustic RIS system can efficiently reflect acoustic waves and dramatically increase communication data rates and distances.

Keywords: rate long; high data; data rate; reconfigurable intelligent; ris; acoustic reconfigurable

Journal Title: IEEE Communications Magazine
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.