LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enabling Technologies toward Fully LTE-Compatible Full-Duplex Radio

Photo by jonathanvez from unsplash

Full-duplex radio has potential to double spectral efficiency by simultaneously transmitting and receiving signals in the same frequency band, but at the expense of additional hardware and power consumption for… Click to show full abstract

Full-duplex radio has potential to double spectral efficiency by simultaneously transmitting and receiving signals in the same frequency band, but at the expense of additional hardware and power consumption for self-interference cancellation. Hence, the deployment of a full-duplex cellular network can be realized by employing full-duplex functionality only at an eNodeB, which is supposed to have sufficient computation and power resources, and by scheduling pairs of half-duplex UEs that are in either downlink or uplink. By doing so, fast and smooth full-duplex deployment is possible while minimally affecting the legacy UEs and the rest of the network entities. In this article, we provide technical challenges and solutions for an LTE-compatible full-duplex cellular network, featuring wideband and wide dynamic range support for RF self-interference cancellation, and robust and efficient self-interference channel estimation for digital self-interference cancellation. Based on a realistic LTE-based cellular model, our full-duplex radio design is evaluated through system-level simulations and real-world testbed experiments. Simulation results show that a significant throughput gain can be achieved by the full-duplex technique despite the existence of physical limiting factors such as path loss, fading, and other-cell interference. Testbed measurements reveal that at a bandwidth of 20 MHz, self-interference cancellation up to 37 dB is achieved in the RF domain, and most of the residual self-interference is further cancelled down to the noise floor in the subsequent digital domain.

Keywords: self interference; full duplex; duplex radio; duplex

Journal Title: IEEE Communications Magazine
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.