The flying ad hoc network (FANET) is a new paradigm of wireless communication that governs the autonomous movement of UAVs and supports UAV-to-UAV communication. A FANET can provide an effective… Click to show full abstract
The flying ad hoc network (FANET) is a new paradigm of wireless communication that governs the autonomous movement of UAVs and supports UAV-to-UAV communication. A FANET can provide an effective real-time communication solution for the multiple UAV systems considering each flying UAV as a router. However, existing mobile ad hoc protocols cannot meet the needs of FANETs due to high-speed mobility and frequent topology change. In addition, the complicated flight environment and varied flight tasks lead to the traditional built-in-rules protocols no longer meeting the demands of autonomy. Hence, we have proposed adaptive hybrid communication protocols including a novel position-prediction-based directional MAC protocol (PPMAC) and a self-learning routing protocol based on reinforcement learning (RLSRP). The performance results show that the proposed PPMAC overcomes the directional deafness problem with directional antennas, and RLSRP provides an automatically evolving and more effective routing scheme. Our proposed hybrid adaptive communication protocols have the potential to provide an intelligent and highly autonomous communication solution for FANETs, and indicate the main research orientation of FANET protocols.
               
Click one of the above tabs to view related content.