Current-differential principles are well known and commonly used for the protection of medium and large transformers, large motors, medium-voltage (MV) generators, MV and high-voltage buses, and any type of important… Click to show full abstract
Current-differential principles are well known and commonly used for the protection of medium and large transformers, large motors, medium-voltage (MV) generators, MV and high-voltage buses, and any type of important power equipment with measurable input and output currents. However, is it practical to protect low-voltage (LV) distribution buses using differential protection? This article describes bus differential protection principles as well as interlocking principles for overcurrent protection. We discuss specific issues in applying differential protection in LV systems. Additionally, we present a concept of partial differential (PD) protection, which can be used in conjunction with zone-selective interlocking (ZSI) or as backup to traditional overcurrent protection to achieve high-speed and selective fault clearance. Additional concepts for the implementation of bus differential protection using networked data in LV systems are introduced.
               
Click one of the above tabs to view related content.