LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Process Knowledge-Infused AI: Toward User-Level Explainability, Interpretability, and Safety

AI has seen wide adoption for automating tasks in several domains. However, AI's use in high-value, sensitive, or safety-critical applications such as self-management for personalized health or personalized nutrition has… Click to show full abstract

AI has seen wide adoption for automating tasks in several domains. However, AI's use in high-value, sensitive, or safety-critical applications such as self-management for personalized health or personalized nutrition has been challenging. These require that the AI system follows guidelines or well-defined processes set by experts, community, or standards. We characterize these as process knowledge (PK). For example, to diagnose the severity of depression, the AI system should incorporate PK that is part of the clinical decision-making process, such as the Patient Health Questionnaire (PHQ-9). Likewise, a nutritionist's knowledge and dietary guidelines are needed to create food plans for diabetic patients. Furthermore, the BlackBox nature of purely data-reliant statistical AI systems falls short in providing user-understandable explanations, such as what a clinician would need to ensure and document compliance with medical guidelines before relying on a recommendation. Using the examples of mental health and cooking recipes for diabetic patients, we show why, what, and how to incorporate PK along with domain knowledge in machine learning. We discuss methods for infusing PK and present performance evaluation metrics. Support for safety and user-level explainability of the PK-infused learning improves confidence and trust in the AI system.

Keywords: safety; level explainability; user level; knowledge; process knowledge

Journal Title: IEEE Internet Computing
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.