Learning effective representations of users and items is crucially important to recommendation with implicit feedback. Matrix factorization is the basic idea to derive the representations of users and items by… Click to show full abstract
Learning effective representations of users and items is crucially important to recommendation with implicit feedback. Matrix factorization is the basic idea to derive the representations of users and items by decomposing the given interaction matrix. However, existing matrix factorization based approaches share the limitation in that the interaction between user embedding and item embedding is only weakly enforced by fitting the given individual rating value, which may lose potentially useful information. In this paper, we propose a novel Augmented Generalized Matrix Factorization (AGMF) approach that is able to incorporate the historical interaction information of users and items for learning effective representations of users and items. Despite the simplicity of our proposed approach, extensive experiments on four public implicit feedback datasets demonstrate that our approach outperforms state-of-the-art counterparts. Furthermore, the ablation study demonstrates that by using the historical interactions to enrich user embedding and item embedding for Generalized Matrix Factorization, better performance, faster convergence, and lower training loss can be achieved.
               
Click one of the above tabs to view related content.