LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Intelligent Indoor Positioning Based on Artificial Neural Networks

Photo from wikipedia

LBS has become an integral part of people's life nowadays. However, the GPS restricted by the shielding effect is unavailable for indoor environments. Therefore, accurately locating an electronic device indoors… Click to show full abstract

LBS has become an integral part of people's life nowadays. However, the GPS restricted by the shielding effect is unavailable for indoor environments. Therefore, accurately locating an electronic device indoors has become a challenging issue in recent years. This work employs the CSi combined with neural networks to achieve an accurate indoor positioning. The CSi refers to known channel properties of a communication link in wireless communications. This information describes how a signal propagates from the transmitter to the receiver and represents the combined effects of, for example, scattering, fading, and power decay with distance. This work will evaluate several neural networks for the positioning, including the FCNN, CNN, and GCNN. in multi-carrier communication systems, the CSi of adjacent subcarriers has a high correlation, and hence, the CNN is promising to learn and extract the features of this input information corresponding to the location of radio devices. Beyond that, we also investigate an improved CNN, that is, the GCNN, which has more talent to locate in indoor environments than traditional CNNs. Experimental results show that the proposed GCNN can achieve a root-mean-square error (RMSE) of less than 0.08m and 0.3m for 16 and two antennas, respectively. in addition, the computational complexities and required numbers of parameters of compared deep neural networks have been analyzed as well.

Keywords: positioning based; based artificial; indoor; neural networks; indoor positioning; intelligent indoor

Journal Title: IEEE Network
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.