LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

AI in 6G: Energy-Efficient Distributed Machine Learning for Multilayer Heterogeneous Networks

Photo by homajob from unsplash

Adept network management is key for supporting extremely heterogeneous applications with stringent quality of service (QoS) requirements; this is more so when envisioning the complex and ultra-dense 6G mobile heterogeneous… Click to show full abstract

Adept network management is key for supporting extremely heterogeneous applications with stringent quality of service (QoS) requirements; this is more so when envisioning the complex and ultra-dense 6G mobile heterogeneous network (HetNet). From both the environmental and economical perspectives, non-homogeneous QoS demands obstruct the minimization of the energy footprints and operational costs of the envisioned robust networks. As such, network intelligentization is expected to play an essential role in the realization of such sophisticated aims. The fusion of artificial intelligence (AI) and mobile networks will allow for the dynamic and automatic configuration of network functionalities. Machine learning (ML), one of the backbones of AI, will be instrumental in forecasting changes in network loads and resource utilization, estimating channel conditions, optimizing network slicing, and enhancing security and encryption. However, it is well known that ML tasks themselves incur massive computational burdens and energy costs. To overcome such obstacles, we propose a novel layer-based HetNet architecture which optimally distributes tasks associated with different ML approaches across network layers and entities; such a HetNet boasts multiple access schemes as well as device-to-device (D2D) communications to enhance energy efficiency via collaborative learning and communications.

Keywords: network; energy; machine learning; efficient distributed; energy efficient

Journal Title: IEEE Network
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.