LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep Reinforcement Learning Assisted Spectrum Management in Cellular Based Urban Air Mobility

Photo by hajjidirir from unsplash

The emerging urban air mobility (UAM) opens a new transportation paradigm to support increasing mobility demand in metropolitan areas. A major challenge for UAM is to ensure reliable two-way wireless… Click to show full abstract

The emerging urban air mobility (UAM) opens a new transportation paradigm to support increasing mobility demand in metropolitan areas. A major challenge for UAM is to ensure reliable two-way wireless communications between aerial vehicles and their associated ground air traffic control centers for safe operations. The concept of cellular-based UAM (cUAM) provides a promising solution for reliable air-ground communications in urban air transportation, where each aerial vehicle is integrated into an existing cellular network as a new aerial user, sharing the cellular spectrum with existing terrestrial users. Generally, the additional aeronautical use of cellular spectrum can introduce harmful interference to current terrestrial communications, which only amplifies the severity of spectrum scarcity issues. Therefore, a new spectrum management solution is necessary for cUAM applications. In this article, we first introduce the communication requirements and spectrum management challenges in cUAM. Then we propose to apply deep reinforcement learning technology to perform dynamic spectrum management in cUAM. Next, a cUAM use case is investigated where a deep-reinforcement-learning-based dynamic spectrum sharing solution is proposed to minimize the total UAM mission completion time. Numerical results show that the proposed solution can reduce the mission completion time and improve the spectrum utilization efficiency. Finally, we present several directions for future research.

Keywords: reinforcement learning; deep reinforcement; air; spectrum management; urban air

Journal Title: IEEE Wireless Communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.