LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Uniform Stabilization of Nonlinear Systems With Arbitrary Switchings and Dynamic Uncertainties

Photo from wikipedia

We solve the problem of global uniform input-to-state stabilization of nonlinear switched systems with time-varying and periodic dynamics, with dynamic uncertainties, and with external disturbances. The switching signal is assumed… Click to show full abstract

We solve the problem of global uniform input-to-state stabilization of nonlinear switched systems with time-varying and periodic dynamics, with dynamic uncertainties, and with external disturbances. The switching signal is assumed to be unknown and the dynamics of the known components of the state vector is equivalent to the general triangular form (GTF) with non-invertible input-output maps. In our first and most general result, we prove that, if the dynamic uncertainty is treated as external disturbance, then the general triangular form system can be stabilized with arbitrarily small gain w.r.t. the dynamic uncertainty by means of a switching-independent, smooth and periodic feedback. Hence, using a suitable extension of the well-known small gain theorem to our case of switched systems with arbitrary switchings, we obtain the uniform input-to-state stabilization of the entire interconnected system. The second part of the paper addresses a more special case of triangular form (TF) switched systems with right-invertible input-output (I-O) maps with unknown switchings and with dynamic uncertainties. We show that the design becomes simpler and more constructive and the controllers become time-invariant if the dynamics is autonomous in this special case. Finally, we consider an example with explicit design of the stabilizing controllers.

Keywords: arbitrary switchings; stabilization; systems arbitrary; switchings dynamic; dynamic uncertainties; stabilization nonlinear

Journal Title: IEEE Transactions on Automatic Control
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.